Modelling general recursion in type theory

Author:

BOVE ANA,CAPRETTA VENANZIO

Abstract

Constructive type theory is an expressive programming language in which both algorithms and proofs can be represented. A limitation of constructive type theory as a programming language is that only terminating programs can be defined in it. Hence, general recursive algorithms have no direct formalisation in type theory since they contain recursive calls that satisfy no syntactic condition guaranteeing termination. In this work, we present a method to formalise general recursive algorithms in type theory. Given a general recursive algorithm, our method is to define an inductive special-purpose accessibility predicate that characterises the inputs on which the algorithm terminates. The type-theoretic version of the algorithm is then defined by structural recursion on the proof that the input values satisfy this predicate. The method separates the computational and logical parts of the definitions and thus the resulting type-theoretic algorithms are clear, compact and easy to understand. They are as simple as their equivalents in a functional programming language, where there is no restriction on recursive calls. Here, we give a formal definition of the method and discuss its power and its limitations.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Primitive Recursive Dependent Type Theory;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. Martin-Löf à la Coq;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

3. Dependently-Typed Programming with Logical Equality Reflection;Proceedings of the ACM on Programming Languages;2023-08-30

4. A Type-Based Approach to Divide-and-Conquer Recursion in Coq;Proceedings of the ACM on Programming Languages;2023-01-09

5. Curiously Empty Intersection of Proof Engineering and Computational Sciences;Computational Methods in Applied Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3