1. Daniel Gratzer , Jonathan Sterling , and Lars Birkedal . 2019. Implementing a modal dependent type theoPryo.c. ACM Program. Lang., 3 , ICFP, Article 107, ( July 2019 ), 29 pages. do1i:0.1145/3341711. Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. 2019. Implementing a modal dependent type theoPryo.c. ACM Program. Lang., 3, ICFP, Article 107, ( July 2019 ), 29 pages. do1i:0.1145/3341711.
2. Peter Hancock , Conor McBride , Neil Ghani , Lorenzo Malatesta , and Thorsten Altenkirch . 2013. Small induction recursion . In Typed Lambda Calculi and Applications. Masahito Hasegawa, (Ed.) Springer Berlin Heidelberg , Berlin, Heidelberg , 156-172. d1o0i. :10 07 /978-3-642-38946-7_13. Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and Thorsten Altenkirch. 2013. Small induction recursion. In Typed Lambda Calculi and Applications. Masahito Hasegawa, (Ed.) Springer Berlin Heidelberg, Berlin, Heidelberg, 156-172. d1o0i. :10 07 /978-3-642-38946-7_13.
3. Jasper Hugunin . 2020 . Why not w? In26th International Conference on Types for Proofs and Programs, TYPES 2020 , March 2-5, 2020, University of Turin, Italy (LIPIcs). Ugo de'Liguoro, Stefano Berardi, and Thorsten Altenkirch, (Eds.) Vol. 188 . Schloss Dagstuhl-LeibnizZentrum für Informatik, 8 : 1-8 :9. isbn: 978-3-95977-182-5. do1i:0.4 230/LIPIcs.TYPES. 2020. 8. Ende Jin, Nada Amin, and Yizhou Zhang. 2023. Extensible metatheory mechanization via family polymorphisPmro.c. ACM Program. Lang., 7, PLDI, Article 172, ( June 2023 ), 25 pages. doi1:0. 1 145 /3591286. Jasper Hugunin. 2020. Why not w? In26th International Conference on Types for Proofs and Programs, TYPES 2020, March 2-5, 2020, University of Turin, Italy (LIPIcs). Ugo de'Liguoro, Stefano Berardi, and Thorsten Altenkirch, (Eds.) Vol. 188. Schloss Dagstuhl-LeibnizZentrum für Informatik, 8 : 1-8 :9. isbn: 978-3-95977-182-5. do1i:0.4 230/LIPIcs.TYPES. 2020. 8. Ende Jin, Nada Amin, and Yizhou Zhang. 2023. Extensible metatheory mechanization via family polymorphisPmro.c. ACM Program. Lang., 7, PLDI, Article 172, ( June 2023 ), 25 pages. doi1:0. 1 145 /3591286.
4. The Braga Method: Extracting Certified Algorithms from Complex Recursive Schemes in Coq