Abstract
For all uniformly bounded sequences of independent random variablesX1, X2,···, a complete comparison is made between the optimal valueV(X1, X2, ···) = sup {EXt:tis an (a.e.) finite stop rule forX1,X2, ···} and, whereMi(X1,X2, ···) is theith largest order statistic forX1, X2, ··· In particular, fork>1, the set of ordered pairs {(x,y):x=V(X1, X2,···) andfor some independent random variablesX1, X2, ··· taking values in [0, 1]} is precisely the set, whereBk(0) = 0,Bk(1) = 1, and forThe result yields sharp, universal inequalities for independent random variables comparing two choice mechanisms, the mortal&s value of the gameV(X1, X2,···) and the prophet&s constrained maxima expectation of the game. Techniques of proof include probability- and convexity-based reductions; calculus-based, multivariate, extremal problem analysis; and limit theorems of Poisson-approximation type. Precise results are also given for finite sequences of independent random variables.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献