Affiliation:
1. Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel;
2. Microsoft Research, Herzliya 4672415, Israel;
3. Institute of Theoretical Computer Science, Shanghai University of Finance and Economics, Shanghai 200433, China
Abstract
We provide prophet inequality algorithms for online weighted matching in general (nonbipartite) graphs, under two well-studied arrival models: edge arrival and vertex arrival. The weights of the edges are drawn from a priori known probability distribution. Under edge arrival, the weight of each edge is revealed on arrival, and the algorithm decides whether to include it in the matching or not. Under vertex arrival, the weights of all edges from the newly arriving vertex to all previously arrived vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. To study these settings, we introduce a novel unified framework of batched-prophet inequalities that captures online settings where elements arrive in batches. Our algorithms rely on the construction of suitable online contention resolution scheme (OCRS). We first extend the framework of OCRS to batched-OCRS, we then establish a reduction from batched-prophet inequality to batched-OCRS, and finally we construct batched-OCRSs with selectable ratios of 0.337 and 0.5 for edge and vertex arrival models, respectively. Both results improve the state of the art for the corresponding settings. For vertex arrival, our result is tight. Interestingly, a pricing-based prophet inequality with comparable competitive ratios is unknown.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献