A semi-analytical approach for flutter analysis of a high-aspect-ratio wing

Author:

Latif R.F.,Khan M.K.A.ORCID,Javed A.,Shah S.I.A.,Rizvi S.T.I.

Abstract

AbstractWe present a hybrid, semi-analytical approach to perform an eigenvalue-based flutter analysis of an Unmanned Aerial Vehicle (UAV) wing. The wing has a modern design that integrates metal and composite structures. The stiffness and natural frequency of the wing are calculated using a Finite Element (FE) model. The modal parameters are extracted by applying a recursive technique to the Lanczos method in the FE model. Subsequently, the modal parameters are used to evaluate the flutter boundaries in an analytical model based on the p-method. Two-degree-of-freedom bending and torsional flutter equations derived using Lagrange’s principle are transformed into an eigenvalue problem. The eigenvalue framework is used to evaluate the stability characteristics of the wing under various flight conditions. An extension of this eigenvalue framework is applied to determine the stability boundaries and corresponding critical flutter parameters at a range of altitudes. The stability characteristics and critical flutter speeds are also evaluated through computational analysis of a reduced-order model of the wing in NX Nastran using the k- and pk-methods. The results of the analytical and computational methods are found to show good agreement with each other. A parametric study is also carried out to analyse the effects of the structural member thickness on the wing flutter speeds. The results suggest that changing the spar thickness contributes most significantly to the flutter speeds, whereas increasing the rib thickness decreases the flutter speed at high thickness values.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3