On the multi-fidelity approach in surrogate-based multidisciplinary design optimisation of high-aspect-ratio wing aircraft

Author:

Lobo do Vale J.ORCID,Sohst M.,Crawford C.,Suleman A.,Potter G.,Banerjee S.

Abstract

AbstractThe reduction of computational costs in the context of the Multidisciplinary Design Optimisation of a typical medium-range aircraft was investigated through an assessment of active constraints and the use of multi-fidelity models-based estimation of drag and structural stress. The results show that for this problem, from the set of considered constraints that includes flutter boundary, the active constraint is a 2.5g pull up Maximum Take Off Weight. Results show that the multi-fidelity approach reduced the required high-fidelity aerodynamic number of evaluations, for both drag assessment and stress assessment with sufficient level of accuracy for the former and conservatively for the latter. Further computational cost reduction can be achieved using a surrogate model based Multidisciplinary Design Optimisation. The best configuration attained shows an Aspect Ratio increase of 16%, a reduction of 4.5% in fuel consumption and wing structural weight increase of 2.7% relative to a predefined baseline configuration.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference71 articles.

1. Non-linear aeroelastic prediction for aircraft applications

2. Foundations of Global Genetic Optimisation;Schaefer;Springer,2007

3. Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design

4. Nonlinear Aeroelastic Modeling and Analysis of Fully Flexible Aircraft

5. Aeroelastic flutter prediction using multi-fidelity modeling of the aerodynamic influence coefficients, Presented at the AIAA Scitech 2019;Thelen;Forum,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3