Affiliation:
1. University of California Berkeley Department of Mechanical Engineering, , Berkeley, CA 94720
Abstract
Abstract
Aeroelastic flutter is a dynamically complex phenomenon that has adverse and unstable effects on elastic structures. It is crucial to better predict the phenomenon of flutter within the scope of aircraft structures to improve the design of their wings. This review aims to establish fundamental guidelines for flutter analysis across subsonic, transonic, supersonic, and hypersonic flow regimes, providing a thorough overview of established analytical, numerical, and reduced-order models as applicable to each flow regime. The review will shed light on the limitations and missing components within the previous literature on these flow regimes by highlighting the challenges involved in simulating flutter. In addition, popular methods that employ the aforementioned analyses for optimizing wing structures under the effects of flutter—a subject currently garnering significant research attention—are also discussed. Our discussion offers new perspectives that encourage collaborative effort in the area of computational methods for flutter prediction and optimization.
Funder
Air Force Office of Scientific Research
University of California Berkeley
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献