Activation of host constitutive immune defence by an intestinal trypanosome parasite of bumble bees

Author:

BROWN M. J. F.,MORET Y.,SCHMID-HEMPEL P.

Abstract

Many parasites, including important species that affect humans and livestock, must survive the harsh environment of insect guts to complete their life-cycle. Hence, understanding how insects protect themselves against such parasites has immediate practical implications. Previously, such protection has been thought to consist mainly of mechanical structures and the action of lectins. However, recently it has become apparent that gut infections may interact with the host immune system in more complex ways. Here, using bumble bees, Bombus terrestris and their non-invasive gut trypanosome, Crithidia bombi, as a model system we investigated the effects of parasitic infection, host resources and the duration of infections on the host immune system. We found that infection doubled standing levels of immune defence in the haemolymph (the constitutive pro-phenoloxidase system), which is used as a first, general defence against parasites. However, physical separation of the parasite from the haemolymph suggests the presence of a messenger system between the gut and the genes that control the pro-phenoloxidase system. Surprisingly, we found no direct effect of host resource-stress or duration of the infection on the immune system. Our results suggest a novel and tactical response of insects to gut infections, demonstrating the complexity of such host–parasite systems.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3