Newly emerged bumblebees are highly susceptible to gut parasite infection

Author:

Wolmuth-Gordon Hannah SORCID,Nakabayashi Kazumi,Brown Mark JF

Abstract

AbstractOne factor that can affect infection susceptibility is host age, the effects of which vary in a range of ways. For example, susceptibility may increase with age, due to senescence or decrease with age as a result of maturation of the immune system. If certain ages are more susceptible to infection, populations with contrasting demographics, such as same-age cohorts versus a mixture of ages, will exhibit differing disease prevalence. We use the bumblebee, Bombus terrestris, and its interaction with the gut trypanosome Crithidia sp. as a model system to investigate age-related susceptibility in a social insect. Crithidia sp. are widespread and prevalent parasites of bumblebees that are spread between colonies via faeces on flowers when foraging, and within colonies via contact with infected bees and contaminated surfaces and resources. In the field, Bombus spp. live for approximately three weeks. Here, we inoculated bumblebees at 0, 7, 14 and 21 days of age and measured their infection after one week. We also measured the level of gene expression of two antimicrobial peptides important in the defence against Crithidia bombi in bumblebees. We found that younger bumblebees are more susceptible to infection by Crithidia sp. than their older siblings. Specifically, individuals inoculated on their first day of emergence had infection intensities seven days later that were four-fold higher than bees inoculated at 21 days of age. In contrast, the gene expression of two AMPs known to protect against the trypanosome, abaecin and defensin, did not significantly vary with age. These results suggest that age does affect susceptibility to Crithidia sp. infection in B. terrestris. The higher susceptibility of callows may have implications for the susceptibility of colonies at different stages of their lifecycle, due to the contrasting age demography of workers in the colony.

Funder

Royal Holloway, University of London

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3