Schistosoma mansoni: a comparative study of artificially transformed schistosomula and schistomula recoverd after cercarial penetration of isolated skin

Author:

Brink Linda H.,McLaren Diane J.,Smithers S. R.

Abstract

A comparison was made of the ultrastructure, development and antigenic nature of the surfaces and of the viability of three types of schistosomula ofSchistosoma mansoni: schistosomula formed afrer cercariae had penetrated isolated skin (SS), schistosomula produced after mechanical separation of cercarial tails from bodies (MS), and schistosomula transformed from cercariae after incubation in fresh rat serum (RS).Within 2 h of transformation, the surface membrane of all three types of schistosomula had changed from trilaminate to heptalaminate structures and SS and MS had lost their cercarial glycocalyx. Initially a dense amorphous material was demonstrated on the surfaces of RS, which was thought to be the result of an interaction between a factor in rat serum and the glycocalyx: this material was greatly reduced within 2 h of transformation. The pre-acetabular glands of SS were emptied while those of MS and RS retained their contents. Immunofluorescent studies showed that all schistosomula bound serum from mice immune toS. mansoni, but the binding was stronger with MS and RS. The mixed agglutination reaction demonstrated the presence of human A and B blood group-like antigenic determinants on approximately 30% of 3 h old SS; these determinants were not detected on MS or RS.In vitro, the development of MS and RS was similar to SS; the first schistosomula reached the ‘gut-closed’ stage by day 10; 50–70% of SS reached this stage by day 12, in contrast to only 25–50% of MS and RS. Between 28 and 45% of all schistosomula developed to maturity when injected intravenously into mice.It was concluded that the two types of artificially prepared schistosomula fultil the main criteria of transformation from cercaria to schistosomulum. Further, it is suggested that MS are the most appropriate source of material for immunochemical and physiological studies.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Animal Science and Zoology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3