Spatial Resolution Optimization of Backscattered Electron Images Using Monte Carlo Simulation

Author:

Probst Camille,Demers Hendrix,Gauvin Raynald

Abstract

AbstractThe relation between probe size and spatial resolution of backscattered electron (BSE) images was studied. In addition, the effect of the accelerating voltage, the current intensity and the sample geometry and composition were analyzed. An image synthesis method was developed to generate the images from backscattered electron coefficients obtained from Monte Carlo simulations. Spatial resolutions of simulated images were determined with the SMART-J method, which is based on the Fourier transform of the image. The resolution can be improved by either increasing the signal or decreasing the noise of the backscattered electron image. The analyses demonstrate that using a probe size smaller than the size of the observed object (sample features) does not improve the spatial resolution. For a probe size larger than the feature size, the spatial resolution is proportional to the probe size.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3