Author:
Brodu Etienne,Bouzy Emmanuel
Abstract
AbstractThe finding of this study is that the interaction volume in electron microscopy in transmission is well ordered laterally, with a remarkable and unexpected consequence being that lateral subsections of the interaction volume produce subsections of the Kikuchi diffraction pattern. It makes the microstructure of samples directly visible in Kikuchi patterns. This is first illustrated with polycrystalline Ti–10Al–25Nb with an on-axis transmission Kikuchi diffraction set-up in a scanning electron microscope. It is then shown via a Monte Carlo simulation and a large-angle convergent-beam electron diffraction experiment that this phenomenon finds its origin in the nature of the differential elastic and quasi-elastic cross sections. This phenomenon is then quantified by a careful image analysis of Kikuchi patterns recorded across a vertical interface in a silicon sample specifically designed and fabricated. A Monte Carlo simulation reproducing all the geometric parameters is conducted. Experiments and simulations match very well qualitatively, but with a slight quantitativity gap. The specificity of the thermal diffuse scattering cross-section, not available in the simulation, is thought to be responsible for this gap. Beside Kikuchi diffraction, the case of diffraction spots and diffuse background present in the pattern is also discussed.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献