Accuracy of Local Polarization Measurements by Scanning Transmission Electron Microscopy

Author:

Calderon Sebastian1ORCID,Funni Stephen D1ORCID,Dickey Elizabeth C1ORCID

Affiliation:

1. Carnegie Mellon University Department of Materials Science and Engineering, , Pittsburgh, PA 15213, USA

Abstract

Abstract Accurately determining local polarization at atomic resolution can unveil the mechanisms by which static and dynamical behaviors of the polarization occur, including domain wall motion, defect interaction, and switching mechanisms, advancing us toward the better control of polarized states in materials. In this work, we explore the potential of atomic-resolution scanning transmission electron microscopy to measure the projected local polarization at the unit cell length scale. ZnO and PbMg1/3Nb2/3O3 are selected as case studies, to identify microscope parameters that can significantly affect the accuracy of the measured projected polarization vector. Different STEM imaging modalities are used to determine the location of the atomic columns, which, when combined with the Born effective charges, allows for the calculation of local polarization. Our results indicate that differentiated differential phase contrast (dDPC) imaging enhances the accuracy of measuring local polarization relative to other imaging modalities, such as annular bright-field or integrated-DPC imaging. For instance, under certain experimental conditions, the projected spontaneous polarization for ZnO can be calculated with 1.4% error from the theoretical value. Furthermore, we quantify the influence of sample thickness, probe defocus, and crystal mis-tilt on the relative errors of the calculated polarization.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3