Automated Image Acquisition for Low-Dose STEM at Atomic Resolution

Author:

Mittelberger AndreasORCID,Kramberger Christian,Hofer Christoph,Mangler Clemens,Meyer Jannik C.

Abstract

AbstractBeam damage is a major limitation in electron microscopy that becomes increasingly severe at higher resolution. One possible route to circumvent radiation damage, which forms the basis for single-particle electron microscopy and related techniques, is to distribute the dose over many identical copies of an object. For the acquisition of low-dose data, ideally no dose should be applied to the region of interest before the acquisition of data. We present an automated approach that can collect large amounts of data efficiently by acquiring images in a user-defined area-of-interest with atomic resolution. We demonstrate that the stage mechanics of the Nion UltraSTEM, combined with an intelligent algorithm to move the sample, allow the automated acquisition of atomically resolved images from micron-sized areas of a graphene substrate. Moving the sample stage automatically in a regular pattern over the area-of-interest enables the collection of data from pristine sample regions without exposing them to the electron beam before recording an image. Therefore, it is possible to obtain data with minimal dose (no prior exposure during focusing), which is only limited by the minimum signal needed for data processing. This enables us to minimize beam-induced damage in the sample and to acquire large data sets within a reasonable amount of time.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3