Versatile Homebuilt Gas Feed and Analysis System for Operando TEM of Catalysts at Work

Author:

Plodinec MilivojORCID,Nerl Hannah C.ORCID,Farra Ramzi,Willinger Marc G.,Stotz Eugen,Schlögl Robert,Lunkenbein ThomasORCID

Abstract

AbstractUnderstanding how catalysts work during chemical reactions is crucial when developing efficient catalytic materials. The dynamic processes involved are extremely sensitive to changes in pressure, gas environment and temperature. Hence, there is a need for spatially resolved operando techniques to investigate catalysts under working conditions and over time. The use of dedicated operando techniques with added detection of catalytic conversion presents a unique opportunity to study the mechanisms underlying the catalytic reactions systematically. Herein, we report on the detailed setup and technical capabilities of a modular, homebuilt gas feed system directly coupled to a quadrupole mass spectrometer, which allows for operando transmission electron microscopy (TEM) studies of heterogeneous catalysts. The setup is compatible with conventional, commercially available gas cell TEM holders, making it widely accessible and reproducible by the community. In addition, the operando functionality of the setup was tested using CO oxidation over Pt nanoparticles.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3