Recent progress of operando transmission electron microscopy in heterogeneous catalysis

Author:

Zhang Fan,Liu Wei

Abstract

As a highly intricate process encompassing multiple length scales, catalysis research evolves into a comprehensive understanding of reaction kinetics across microscopic to atomic dimensions when electron microscopy, particularly the in situ transmission electron microscopy (TEM), emerges to be increasingly relevant. Meanwhile, the absence of effective methodologies for measuring reaction products during catalysis complicates efforts to elucidate the operational state and catalytic activity of the catalyst. With ongoing advancements of refined gas-cell design within TEM and other in situ accessories, diverse methodologies have emerged to ascertain the occurrence of chemical reactions. In this review, we summarized the recent progress of operando TEM while further extending its conceptual boundaries by including newly emerged reaction-detecting approaches capable of bridging microstructure to the reaction process. These methods involve not only traditional ones of product detection, e.g., in situ mass spectrometry and electron energy loss spectroscopy, but also other reaction-correlative characterizations, such as directly imaging reactant molecule, modified in situ reactor for thermogravimetry and temperature-programmed reaction, and TEM image-based microstructure quantification and activity correlation. Applications, inherent challenges, and our perspectives within these operando TEM techniques are deliberated.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3