A 95-nm Spacing in Drosophila Polytene Chromatin

Author:

Olesen J.B.,Heckman C.A.

Abstract

Abstract: It has long been debated whether the 30-nm fiber of chromatin is packed in an orderly array. The fiber may be condensed by supercoiling, producing structures of varying diameter. Alternatively, technical problems may have prevented the detection of higher-order structures. We developed a strategy to distinguish between these two possibilities. One potential obstacle to studying the order of packing was the effect of fixatives, dehydrating agents, heat, and embedding polymers on the native structure of chromatin prepared for viewing by electron microscopy. The known tendency of proteins to be degraded by osmium tetroxide and subsequently to be extracted in the conventional protocols for embedding might be particularly damaging. To avoid such denaturants and ensure the retention of proteins in chromatin, the embedding resin HACH was employed. Drosophila mimica polytene chromosomes were thin sectioned, stained with uranyl acetate, and viewed in the transmission electron microscope. Images were digitized and subjected to computerized image processing. Raw data files, containing boundary coordinates of all closed figures in the image, were edited to retain only those regions of interest (ROIs) that exhibited dimensions similar to those of 30-nm fibers in projection views. Euclidean distances between the centroids of such structures were calculated to obtain linear intercepts between recognizable 30-nm fibers. According to stereology theory, the dimensions of a lamellar structure can be determined from the volume distribution function of such intercepts. Therefore, intercept values were pooled for final data files from five processed images of chromatin. The resulting frequency histogram, showing the number of observations at different intercept values, had a sigmoidal inflection that was diagnostic of a major, new spacing at 95 nm. The 95-nm minimum was sandwiched between maxima in the 85 to 90 nm interval and throughout the range 105 to 120 nm. The results suggest that established stereological theory will be a useful tool for investigating the intractable problem of higher-order chromatin structure.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3