HACH: A Polymer Designed to Optimize Protein Antigen Localization

Author:

Olesen J.B.,Heckman C.A.,Lukinius A.,Schwab D.W.,Upite D.V.,Fioravanti C.F.

Abstract

Abstract: The purpose of this study was to determine whether a polymer could be formed from relatively innocuous monomeric ingredients and, if so, if it might serve as a suitable embedding medium for maximizing antigen retention. Such a polymer, HACH, was made up from a mixture of 2-hydroxyhexanedial and carbohydrazide. It polymerized spontaneously at room temperature within 24 hr. Preservation of protein antigenicity and subsequent immunocytochemical localization were demonstrated by three methods. To determine whether protein antigens were retained up to the polymerization stage, we studied hemoagglutination of red blood cells using antibodies directed against their protein antigens. In these trials, HACH-treated cells exhibited the same agglutination responses as control, untreated cells. Second, a guinea pig antibody was used to immunodecorate insulin in β cells of the islets of Langerhans. The number of gold particles, indicating sites where the antibody was bound, was several-fold greater in HACH- than in Lowicryl K4M-embedded pancreatic β cells. To assess the limit of detection of protein antigens in thin sections, an example of a protein present in mitochondria, lipoamide dehydrogenase, was also studied. An indirect procedure for immunodecoration, employing rabbit immunoglobulin G followed by gold-tagged secondary antibody, indicated that the enzyme was present at several sites within cross-sectioned mitochondria. The results suggest that the HACH polymer will be useful for the localization of antigens that are present in relatively few copies.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3