Advanced Hybrid Positioning System of SEM and AFM for 2D Material Surface Metrology

Author:

Kim Taeryong1,Kim Donghwan2,Kim TaeWan3,Kim Hyunwoo4,Shin ChaeHo2ORCID

Affiliation:

1. Seoul National University Department of Materials Science & Engineering, , Seoul 08826, South Korea

2. Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science , Daejeon 34113, South Korea

3. Jeonbuk National University Department of Electrical Engineering and Smart Grid Research Center, , Jeonju, South Korea

4. Korea Research Institute of Chemical Technology Laboratory for Advanced Molecular Probing (LAMP), , Daejeon 34114, South Korea

Abstract

Abstract As the measurement scale shrinks, the reliability of nanoscale measurement is even more crucial for a variety of applications, including semiconductor electronics, optical metamaterials, and sensors. Specifically, it is difficult to measure the nanoscale morphology at the exact location though it is required for novel applications based on hybrid nanostructures combined with 2D materials. Here, we introduce an advanced hybrid positioning system to measure the region of interest with enhanced speed and high precision. A 5-axis positioning stage (XYZ, R, gripper) makes it possible to align the sample within a 10-μm field of view (FOV) in both the scanning electron microscope (SEM) and the atomic force microscope (AFM). The reproducibility of the sample position was investigated by comparing marker patterns and denting points between the SEM and AFM, revealing an accuracy of 6.5 ± 2.1 μm for the x-axis and 4.5 ± 1.7 μm for the y-axis after 12 repetitions. By applying a different measurement process according to the characteristics of 2D materials, various information such as height, length, or roughness about MoTe2 rods and MoS2 film was obtained in the same measurement area. As a consequence, overlaid two images can be obtained for detailed information about 2D materials.

Funder

Korea Research Institute of Chemical Technology

National Research Foundation of Korea

National Research Council of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3