EDS and WDS Automation: Past Development and Future Technology

Author:

McCarthy J. J.,Frief J. J.

Abstract

Early Development Automation of electron probe analysis began to flourish in the early 1970s spurred on by advances in computer technology and the availability of operating systems and programming languages that the individual researcher could afford to dedicate to a single instrument. By the end of the decade, most researchers and vendors in the microanalysis field had adopted the PDP-11 minicomputer, and languages such as FOCAL, FORTRAN and BASIC that ran on these computers. A good summary of these early efforts was given by Hatfield. The first use of the energy dispersive detector on the electron probe in 1968 added the need to control the acquisition, display and processing of EDS spectra. As a result, the 70’s were also a time when much attention was focussed on development of software for on-line data reduction and analysis. These efforts produced a suite of programs to provide matrix corrections and spectral processing, and automation of WDS data collection. The culmination of these development efforts was first reported in 1977 with the analysis of a lunar whitlockite mineral by simultaneous EDS/WDS measurement. This analysis determined the concentration of 23 elements, 8 by EDS and took a total of 37 minutes for data collection and analysis. In this paper, the authors noted the complementary use of the EDS and WDS (WDS for trace elements and severe peak overlaps, EDS for other elements and rapid qualitative analysis) in their automated instrument, a convention that remains common on the electron probe even today. Toward the end of the decade the analytical accuracy and precision achieved by automated analysis of bulk samples approached the limits of the instrumentation, with the exception of analysis of light element concentrations.Two Decades of Improvements The explosive growth in digital electronics and microprocessors for data processing and control functions during the 80’s was rapidly applied to electron probe automation. Second and third generation automation systems included direct control of many microscope functions, beam position and imaging conditions. Motor positioning was more precise and far faster. As a result, the data collection and analysis of 23 elements reported in 1977 could be accomplished at least three times faster on a modern instrument.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference11 articles.

1. Schamber, F. H. , in Dzubay, T. , Ed., X-Ray Fluorescence Analysis of Environmental Samples, Ann Arbor Science (1977) 241.

2. Colby, J. W. , Proc. Ann. MAS Conference 6 (1971).

3. Quantitative Electron Probe Microanalysis of Ultra-Light Elements (Boron-Oxygen)

4. Compositional Mapping with the Electron Probe Microanalyzer: Part I

5. Solid-State Energy-Dispersion Spectrometer for Electron-Microprobe X-ray Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3