Examining the Effect of Evaporation Field on Boron Measurements in SiGe: Insights into Improving the Relationship Between APT and SIMS Measurements of Boron

Author:

Martin Andrew J.,Yatzor Brett

Abstract

AbstractUnderstanding and resolving discrepancies between atom probe tomography (APT) and secondary ion mass spectrometry (SIMS) measurements of B dopants in Si-based materials has long been a problem for those in the semiconductor community who wish to measure B within the source/drain SiGe of a device. APT data collection of Si-based materials is typically optimized for Si, which is logical, but perhaps not ideal for field evaporation of B. Increasing the evaporation field well beyond the typically used 28Si2+:28Si+ ratio of approximately 10:1 up to a ratio of ~200:1 is demonstrated to improve B detection while retaining well-matched Si and Ge concentrations with respect to those measured by SIMS. A range of evaporation conditions are examined from a very low field with high laser energy to an extremely high field with extremely low laser energy demonstrating problems at both far ends of the spectrum and a sweet spot when the operating conditions used produce a 28Si2+:28Si+ ratio of approximately 200:1 (in terms of total counts of each ionization state), which is more than an order of magnitude higher than normally used conditions and results in nicely matched B, Si, and Ge APT measurements with those of SIMS.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference22 articles.

1. Factors affecting the accuracy of elemental analysis by transmission EELS

2. Dopant measurements in semiconductors with atom probe tomography

3. Advantages and challenges of 3-D atom probe tomography characterization of FinFETs;Martin;Electron Device Failure Anal,2017

4. Dopant characterization in self-regulatory plasma doped fin field-effect transistors by atom probe tomography

5. Quantitative aspects of PLAD sidewall doping characterization by SIMS and APT;Kouzminov;Microsc Microanal,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3