The Accuracy of Al and Cu Film Thickness Determinations and the Implications for Electron Probe Microanalysis

Author:

Matthews Mike B.,Kearns Stuart L.,Buse Ben

Abstract

AbstractThe accuracy to which Cu and Al coatings can be determined, and the effect this has on the quantification of the substrate, is investigated. Cu and Al coatings of nominally 5, 10, 15, and 20 nm were sputter coated onto polished Bi using two configurations of coater: One with the film thickness monitor (FTM) sensor colocated with the samples, and one where the sensor is located to one side. The FTM thicknesses are compared against those calculated from measured Cu Lαand Al Kα k-ratios using PENEPMA, GMRFilm, and DTSA-II. Selected samples were also cross-sectioned using focused ion beam. Both systems produced repeatable coatings, the thickest coating being approximately four times the thinnest coating. The side-located FTM sensor indicated thicknesses less than half those of the software modeled results, propagating on to 70% errors in substrate quantification at 5 kV. The colocated FTM sensor produced errors in film thickness and substrate quantification of 10–20%. Over the range of film thicknesses and accelerating voltages modeled both the substrate and coatingk-ratios can be approximated by linear trends as functions of film thickness. The Al films were found to have a reduced density of ~2 g/cm2.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference27 articles.

1. Yakowitz H and Newbury DE (1976) A simple analytical method for thin film analysis with massive pure element standards. In Proceedings of the 9th Annual Scanning Electron Microscope Symposium, vol. 1. Chicago, IL: IITRI, pp. 151–152.

2. Statham PJ (2010) Feasibility of X-ray analysis of multi-layer thin films at a single beam voltage. In IOP Conference Series: Materials Science and Engineering, vol. 7, p. 12027.

3. Surface film X-ray microanalysis

4. Density of Thin Films of Vacuum Evaporated Metals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3