Small-step and big-step semantics for call-by-need

Author:

NAKATA KEIKO,HASEGAWA MASAHITO

Abstract

AbstractWe present natural semantics for acyclic as well as cyclic call-by-need lambda calculi, which are proved equivalent to the reduction semantics given by Ariola and Felleisen (J. Funct. Program., vol. 7, no. 3, 1997). The natural semantics are big-step and use global heaps, where evaluation is suspended and memorized. The reduction semantics are small-step, and evaluation is suspended and memorized locally in let-bindings. Thus two styles of formalization describe the call-by-need strategy from different angles. The natural semantics for the acyclic calculus is revised from the previous presentation by Maraist et al. (J. Funct. Program., vol. 8, no. 3, 1998), and its adequacy is ascribed to its correspondence with the reduction semantics, which has been proved equivalent to call-by-name by Ariola and Felleisen. The natural semantics for the cyclic calculus is inspired by that of Launchbury (1993) and Sestoft (1997), and we state its adequacy using a denotational semantics in the style of Launchbury; adequacy of the reduction semantics for the cyclic calculus is in turn ascribed to its correspondence with the natural semantics.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Relational Machine Calculus;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. Formal Verifications of Call-by-Need and Call-by-Name Evaluations with Mutual Recursion;Programming Languages and Systems;2019

3. Verifiably Lazy;Proceedings of the 30th Symposium on Implementation and Application of Functional Languages;2018-09-05

4. The adequacy of Launchbury's natural semantics for lazy evaluation;Journal of Functional Programming;2018

5. A functional reformulation of UnCAL graph-transformations: or, graph transformation as graph reduction;Proceedings of the 2017 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation;2017-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3