Extensible pattern matching via a lightweight language extension

Author:

Syme Don1,Neverov Gregory2,Margetson James1

Affiliation:

1. Microsoft Research, Cambridge, U.K.

2. Queensland University of Technology, Brisbane, Australia

Abstract

Pattern matching of algebraic data types (ADTs) is a standard feature in typed functional programming languages, but it is well known that it interacts poorly with abstraction. While several partial solutions to this problem have been proposed, few have been implemented or used. This paper describes an extension to the .NET language F# called active patterns , which supports pattern matching over abstract representations of generic heterogeneous data such as XML and term structures, including where these are represented via object models in other .NET languages. Our design is the first to incorporate both ad hoc pattern matching functions for partial decompositions and "views" for total decompositions, and yet remains a simple and lightweight extension. We give a description of the language extension along with numerous motivating examples. Finally we describe how this feature would interact with other reasonable and related language extensions: existential types quantified at data discrimination tags, GADTs, and monadic generalizations of pattern matching.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unboxed Data Constructors: Or, How cpp Decides a Halting Problem;Proceedings of the ACM on Programming Languages;2024-01-05

2. Rhombus: A New Spin on Macros without All the Parentheses;Proceedings of the ACM on Programming Languages;2023-10-16

3. Polymorphic extractors for semantic and portable pattern matching (short paper);Proceedings of the 18th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences;2019-10-21

4. Pattern synonyms;ACM SIGPLAN Notices;2018-07-19

5. Non-linear Pattern Matching with Backtracking for Non-free Data Types;Programming Languages and Systems;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3