Geospatial analysis of a COVID-19 outbreak at the University of Wisconsin–Madison: potential role of a cluster of local bars

Author:

Harris Jeffrey E.ORCID

Abstract

Abstract We combined smartphone mobility data with census track-based reports of positive case counts to study a coronavirus disease 2019 (COVID-19) outbreak at the University of Wisconsin–Madison campus, where nearly 3000 students had become infected by the end of September 2020. We identified a cluster of twenty bars located at the epicentre of the outbreak, in close proximity to campus residence halls. Smartphones originating from the two hardest-hit residence halls (Sellery-Witte), where about one in five students were infected, were 2.95 times more likely to visit the 20-bar cluster than smartphones originating in two more distant, less affected residence halls (Ogg-Smith). By contrast, smartphones from Sellery-Witte were only 1.55 times more likely than those from Ogg-Smith to visit a group of 68 restaurants in the same area [rate ratio 1.91, 95% confidence interval (CI) 1.29–2.85, P < 0.001]. We also determined the per-capita rates of visitation to the 20-bar cluster and to the 68-restaurant comparison group by smartphones originating in each of 21 census tracts in the university area. In a multivariate instrumental variables regression, the visitation rate to the bar cluster was a significant determinant of the per-capita incidence of positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tests in each census tract (elasticity 0.88, 95% CI 0.08–1.68, P = 0.032), while the restaurant visitation rate showed no such relationship. The potential super-spreader effects of clusters or networks of places, rather than individual sites, require further attention.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Epidemiology

Reference62 articles.

1. Coronavirus Disease Exposure and Spread from Nightclubs, South Korea

2. The Effect of Mixing Events on the Dynamics of pH1N1 Outbreaks at Small Residential Colleges

3. 20. Davidson College (2020) The College Crisis Initiative (C2I) Dashboard. Available at https://collegecrisis.shinyapps.io/dashboard/ (Accessed 14 November 2020).

4. Risk for Transportation of Coronavirus Disease from Wuhan to Other Cities in China

5. 17. Kwang-tae, K (2020) S. Korea reports 34 new virus cases, biggest single-day jump in one month. Yonhap News Agency, May 10. Available at https://en.yna.co.kr/view/AEN20200510001251320?fbclid=IwAR0pjbudgGNngf91Vr9KwhkEVyg0VXP1Qi99XqlK9QnJ-nNjfq-PxJ1F-zc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3