Transmission trends of the global COVID-19 pandemic with combined effects of adaptive behaviours and vaccination

Author:

Zhou Yuhao,Li Zhaowan,Wu Wei,Xiao Jianpeng,Ma Wenjun,Zhu GuanghuORCID

Abstract

Abstract We developed a mechanism model which allows for simulating the novel coronavirus (COVID-19) transmission dynamics with the combined effects of human adaptive behaviours and vaccination, aiming at predicting the end time of COVID-19 infection in global scale. Based on the surveillance information (reported cases and vaccination data) between 22 January 2020 and 18 July 2022, we validated the model by Markov Chain Monte Carlo (MCMC) fitting method. We found that (1) if without adaptive behaviours, the epidemic could sweep the world in 2022 and 2023, causing 3.098 billion of human infections, which is 5.39 times of current number; (2) 645 million people could be avoided from infection due to vaccination; and (3) in current scenarios of protective behaviours and vaccination, infection cases would increase slowly, levelling off around 2023, and it would end completely in June 2025, causing 1.024 billion infections, with 12.5 million death. Our findings suggest that vaccination and the collective protection behaviour remain the key determinants against the global process of COVID-19 transmission.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Epidemiology

Reference26 articles.

1. Modelling COVID-19

2. 18. CDC (2022) Isolation and precautions for people with COVID-19. (12/12/2021). Available at https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/quarantine-isolation-background.html (Accessed 12 December 2021).

3. 26. Press FA (2022) Global new vaccines are changing from insufficient supply to excess. (08/07/2022). Available at https://www.cls.cn/detail/972290 (Accessed 8 July 2022).

4. Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study

5. Compartmental structures used in modeling COVID-19: a scoping review;Kong;Infectious Diseases of Poverty,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3