Compartmental structures used in modeling COVID-19: a scoping review

Author:

Kong Lingcai,Duan Mengwei,Shi Jin,Hong Jie,Chang Zhaorui,Zhang ZhijieORCID

Abstract

Abstract Background The coronavirus disease 2019 (COVID-19) epidemic, considered as the worst global public health event in nearly a century, has severely affected more than 200 countries and regions around the world. To effectively prevent and control the epidemic, researchers have widely employed dynamic models to predict and simulate the epidemic’s development, understand the spread rule, evaluate the effects of intervention measures, inform vaccination strategies, and assist in the formulation of prevention and control measures. In this review, we aimed to sort out the compartmental structures used in COVID-19 dynamic models and provide reference for the dynamic modeling for COVID-19 and other infectious diseases in the future. Main text A scoping review on the compartmental structures used in modeling COVID-19 was conducted. In this scoping review, 241 research articles published before May 14, 2021 were analyzed to better understand the model types and compartmental structures used in modeling COVID-19. Three types of dynamics models were analyzed: compartment models expanded based on susceptible-exposed-infected-recovered (SEIR) model, meta-population models, and agent-based models. The expanded compartments based on SEIR model are mainly according to the COVID-19 transmission characteristics, public health interventions, and age structure. The meta-population models and the agent-based models, as a trade-off for more complex model structures, basic susceptible-exposed-infected-recovered or simply expanded compartmental structures were generally adopted. Conclusion There has been a great deal of models to understand the spread of COVID-19, and to help prevention and control strategies. Researchers build compartments according to actual situation, research objectives and complexity of models used. As the COVID-19 epidemic remains uncertain and poses a major challenge to humans, researchers still need dynamic models as the main tool to predict dynamics, evaluate intervention effects, and provide scientific evidence for the development of prevention and control strategies. The compartmental structures reviewed in this study provide guidance for future modeling for COVID-19, and also offer recommendations for the dynamic modeling of other infectious diseases. Graphical Abstract "Image missing"

Funder

Natural Science Foundation of China

Public Health Talents Training Program of Shanghai Municipality

Three-Side Innovation Projects for Aquaculture in Jiangsu Province

Major Project of Scientific and Technical Winter Olympics from National Key Research and Development Program of China

13th Five-Year National Science and Technology Major Project for Infectious Diseases

Key projects of the PLA logistics Scientific research Program

Fundamental Research Funds for the Central Universities

Natural Science Funds of Hebei

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

Reference54 articles.

1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2022. https://covid19.who.int/. Accessed 26 Apr 2022.

2. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 26 Nov 2021.

3. Pei T, Wang X, Song C, Liu Y, Huang Q, Shu H, et al. Review on spatiotemporal analysis and modeling of COVID-19 pandemic. J Geo-inform Sci. 2021;23:188–210 (In Chinese).

4. China National Knowledge Internet (CNKI). Tongfang Co., Ltd. 1999. https://www.cnki.net/. Accessed 14 May 2021.

5. Wanfang Data Knowledge Service Platform. Wanfang Data. 1988. https://www.wanfangdata.com.cn/index.html. Accessed 14 May 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3