On the divergence of Hermite-Fejér type interpolation with equidistant nodes

Author:

Mills T.M.,Smith Simon J.

Abstract

If f(x) is defined on [−1, 1], let 1 n(f, x) denote the Lagrange interpolation polynomial of degree n (or less) for f which agrees with f at the n+1 equally spaced points xk, n = −1 + (2k)/n (0 ≤ kn). A famous example due to S. Bernstein shows that even for the simple function h(x) = │x│, the sequence 1 n (h, x) diverges as n → ∞ for each x in 0 < │x│ < 1. A generalisation of Lagrange interpolation is the Hermite-Fejér interpolation polynomial mn (f, x), which is the unique polynomial of degree no greater than m(n + 1) – 1 which satisfies (f, Xk, n) = δo, pf(xk, n) (0 ≤ pm − 1, 0 ≤ kn). In general terms, if m is an even number, the polynomials mn(f, x) seem to possess better convergence properties than the 1 n (f, x). Nevertheless, D.L. Berman was able to show that for g(x) ≡ x, the sequence 2n(g, x) diverges as n → ∞ for each x in 0 < │x│. In this paper we extend Berman's result by showing that for any even m, H¯mn(g, x) diverges as n → ∞ for each x in 0 < │x│ < 1. Further, we are able to obtain an estimate for the error │mn(g, x) – g(x)│.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference9 articles.

1. On Lagrange interpolation with equidistant nodes

2. Über die interpolatorische Darstellung stetiger Funktionen;Faber;Jahresber. Deutsch. Math. Verein.,1914

3. Divergence of the Hermite-Fejér interpolation process;Berman;Uspehi Mat. Nauk.,1958

4. [6] Li X. and Mohapatra R.N. , ‘On the divergence of Lagrange interpolation with equidistant nodes’, Proc. Amer. Math. Soc. (to appear).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Lagrange interpolation with equally spaced nodes;Bulletin of the Australian Mathematical Society;2000-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3