Author:
Byrne Graeme J.,Mills T.M.,Smith Simon J.
Abstract
A quantitative version of a classical result of S.N. Bernstein concerning the divergence of Lagrange interpolation polynomials based on equidistant nodes is presented. The proof is motivated by the results of numerical computations.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. Divergence of the Hermite-Fejér interpolation process;Berman;Uspehi Mat. Nauk.,1958
2. Quelques remarques sur l'interpolation
3. Über Konvergenzfragen bei Polynominterpolation mit äquidistanten Knoten I;Runck;J. Reine Angew. Math.,1961
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative study of approximation using Lagrange and Hermite form of polynomial interpolations;2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS);2021-02-19
2. Rational interpolation of the function |x|α by an extended system of Chebyshev – Markov nodes;Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series;2020-01-07
3. Interpolation Processes;Springer Monographs in Mathematics;2008
4. The divergence of Lagrange interpolation for |x|α (2 < α < 4) at equidistant nodes;Analysis in Theory and Applications;2006-06
5. A note on Lagrange interpolation for |x|λ at equidistant nodes;Bulletin of the Australian Mathematical Society;2004-12