Abstract
Let (ωi, σi, μi.) be two positive finite measure spaces, V a non-zero Hilbert space, and 1 ≤ p < ∞, p # 2. In this article it is shown that each surjective linear isometry between the Bochner spaces induces a Boolean isomorphism between the measure algebras , thus generalizing a result of Cambern's for separable Hilbert spaces.This Banach–Stone type theorem is achieved via a description of the Lp-structure of .
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Norm-Preserving Isomorphisms of L;Hacettepe Journal of Mathematics and Statistics;2016-01-01
2. Almost transitivity of some function spaces;Mathematical Proceedings of the Cambridge Philosophical Society;1994-11
3. Hermitian operators and isometries on sums of Banach spaces;Proceedings of the Edinburgh Mathematical Society;1989-06
4. Almost-Lp-projections and Lp isomorphisms;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;1989
5. Hilbert spaces have the strong Banach-stone property for Bochner spaces;Mathematische Zeitschrift;1987-12