Author:
Fleming R. J.,Jamison J. E.
Abstract
Let E be a Banach sequence space with the property that if (αi) ∈ E and |βi|≦|αi| for all i then (βi) ∈ E and ‖(βi)‖E≦‖(αi)‖E. For example E could be co, lp or some Orlicz sequence space. If (Xn) is a sequence of real or complex Banach spaces, then E can be used to construct a vector sequence space which we will call the E sum of the Xn's and symbolize by ⊕EXn. Specifically, ⊕EXn = {(xn)|(xn)∈Xn and (‖xn‖)∈E}. The E sum is a Banach space with norm defined by: ‖(xn)‖ = ‖(‖xn‖)‖E. This type of space has long been the source of examples and counter-examples in the geometric theory of Banach spaces. For instance, Day [7] used E=lp and Xk=lqk, with appropriate choice of qk, to give an example of a reflexive Banach space not isomorphic to any uniformly conves Banach space. Recently VanDulst and Devalk [33] have considered Orlicz sums of Banach spaces in their studies of Kadec-Klee property.
Publisher
Cambridge University Press (CUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献