Hermitian operators and isometries on sums of Banach spaces

Author:

Fleming R. J.,Jamison J. E.

Abstract

Let E be a Banach sequence space with the property that if (αi) ∈ E and |βi|≦|αi| for all i then (βi) ∈ E and ‖(βi)‖E≦‖(αi)‖E. For example E could be co, lp or some Orlicz sequence space. If (Xn) is a sequence of real or complex Banach spaces, then E can be used to construct a vector sequence space which we will call the E sum of the Xn's and symbolize by ⊕EXn. Specifically, ⊕EXn = {(xn)|(xn)∈Xn and (‖xn‖)∈E}. The E sum is a Banach space with norm defined by: ‖(xn)‖ = ‖(‖xn‖)‖E. This type of space has long been the source of examples and counter-examples in the geometric theory of Banach spaces. For instance, Day [7] used E=lp and Xk=lqk, with appropriate choice of qk, to give an example of a reflexive Banach space not isomorphic to any uniformly conves Banach space. Recently VanDulst and Devalk [33] have considered Orlicz sums of Banach spaces in their studies of Kadec-Klee property.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ISOMETRIES AND HERMITIAN OPERATORS ON SPACES OF VECTOR-VALUED LIPSCHITZ MAPS;Journal of the Institute of Mathematics of Jussieu;2023-11-14

2. Hermitian operators and isometries on symmetric operator spaces;Journal of the European Mathematical Society;2023-05-31

3. Isometries and Hermitian Operators on Zygmund Spaces;Canadian Mathematical Bulletin;2015-06-01

4. Algebraic and invariance properties of the group of isometries;Linear Algebra and its Applications;2015-04

5. Representation of generalized bi-circular projections on Banach spaces;Acta Scientiarum Mathematicarum;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3