Author:
Aron Richard M.,Seoane-Sepúlveda Juan B.,Weber Andreas
Abstract
We give a sufficient condition for an operator to be chaotic and we use this condition to show that, in the Banach space C0[0, ∞) the operator (τλ, cf)(t) = λf(t + c) (with λ > 1 and c > 0) is chaotic, with every n ∈ ℕ being a period for this operator. We also describe a technique to construct, explicitly, hypercyclic functions for this operator.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. Hypercyclic and chaotic semigroups of linear
operators
2. Universal families and hypercyclic operators
3. [5] Kitai C. , Invariant closed sets for linear operators, (Ph.D. Thesis) (University of Toronto, Toronto, Canada, 1982).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献