Linear dynamics of semigroups generated by differential operators

Author:

Alberto Conejero J.1,Lizama Carlos2,Murillo-Arcila Marina3,Peris Alfredo1

Affiliation:

1. Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de VaÌencia, E-46022, València, Spain

2. Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencias, Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile

3. Institut Universitari de Matemàtiques i Aplicacions de Castelló (IMAC), Escuela Superior de Tecnología y Ciencias Experimentales, Universitat Jaume I, Campus de Riu Sec, E-12071, Castelló de la Plana, Spain

Abstract

Abstract During the last years, several notions have been introduced for describing the dynamical behavior of linear operators on infinite-dimensional spaces, such as hypercyclicity, chaos in the sense of Devaney, chaos in the sense of Li-Yorke, subchaos, mixing and weakly mixing properties, and frequent hypercyclicity, among others. These notions have been extended, as far as possible, to the setting of C0-semigroups of linear and continuous operators. We will review some of these notions and we will discuss basic properties of the dynamics of C0-semigroups. We will also study in detail the dynamics of the translation C0-semigroup on weighted spaces of integrable functions and of continuous functions vanishing at infinity. Using the comparison lemma, these results can be transferred to the solution C0-semigroups of some partial differential equations. Additionally, we will also visit the chaos for infinite systems of ordinary differential equations, that can be of interest for representing birth-and-death process or car-following traffic models.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference328 articles.

1. Kinetic models in natural sciences;In Evolutionary equations with applications in natural sciences, Lecture Notes in Math,2015

2. On a universality of the heat equation;Math. Nachr,1997

3. Hypercyclicity and mixing for cosine operator functions generated by second order partial differential operators;J. Math. Anal. Appl,2010

4. Frequently hypercyclic operators;Trans. Amer. Math. Soc,2006

5. Li-Yorke and distributionally chaotic operators;J. Math. Anal. Appl,2011

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chaotic Dynamics of Conformable Maturity-Structured Cell Population Models;Qualitative Theory of Dynamical Systems;2024-09-02

2. Frequently Hypercyclic Semigroup Generated by Some Partial Differential Equations with Delay Operator;Abstract and Applied Analysis;2024-05-17

3. Ergodic properties of a semilinear partial differential equation;Journal of Differential Equations;2023-11

4. On the existence of chaos for the fourth-order Moore–Gibson–Thompson equation;Chaos, Solitons & Fractals;2023-11

5. Chaotic finite difference operators;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3