Abstract
A well-known result due to S.N. Bernstein is that sequence of Lagrange interpolation polynomials for |x| at equally spaced nodes in [−1, 1] diverges everywhere, except at zero and the end-points. In this paper we present a quantitative version concerning the divergence behaviour of the Lagrange interpolants for |x|3 at equidistant nodes. Furthermore, we present the exact rate of convergence for the interpolatory parabolas at the point zero.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献