Abstract
AbstractLet $F$ be a non-archimedean local field of residual characteristic $p$, $\ell \neq p$ be a prime number, and $\text{W}_{F}$ the Weil group of $F$. We classify equivalence classes of $\text{W}_{F}$-semisimple Deligne $\ell$-modular representations of $\text{W}_{F}$ in terms of irreducible $\ell$-modular representations of $\text{W}_{F}$, and extend constructions of Artin–Deligne local constants to this setting. Finally, we define a variant of the $\ell$-modular local Langlands correspondence which satisfies a preservation of local constants statement for pairs of generic representations.
Publisher
Cambridge University Press (CUP)
Reference27 articles.
1. Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique;Aubert;Trans. Amer. Math. Soc.,1995
2. Les Constantes des Equations Fonctionnelles des Fonctions L
3. Congruences modulo $\ell$ between $\epsilon$ factors for cuspidal representations of $GL(2)$
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献