Application of the Nonlinear Tschauner-Hempel Equations to Satellite Relative Position Estimation and Control

Author:

Vepa Ranjan

Abstract

In this paper we develop the nonlinear motion equations in terms of the true anomaly varying Tschauner–Hempel equations relative to a notional orbiting particle in a Keplerian orbit, relatively close to an orbiting primary satellite to estimate the position of a spacecraft. A second orbiting body in Earth orbit relatively close to the first is similarly modelled. The dynamic relative motion models of the satellite and the second orbiting body, both of which are modelled in terms of independent relative motion equations, include several perturbing effects, such as the asymmetry of the Earth gravitational field resulting in the Earth's oblateness effect and the third body accelerations due to the Moon and the Sun. Linear control laws are synthesised for the primary satellite using the transition matrix so it can rendezvous with the second orbiting body. The control laws are then implemented using the state estimates obtained earlier to validate the feedback controller. Thus, we demonstrate the application of a Linear Quadratic Nonlinear Gaussian (LQNG) design methodology to the satellite rendezvous control design problem and validate it.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3