Affiliation:
1. School of Engineering and Material Science, Queen Mary, University of London, London, UK
Abstract
A common strategy in controlling a permanent magnet synchronous generator (PMSG) driven by a wind turbine is the maximization of output power of the wind turbine itself. A control strategy must be adopted, is to deliver a desired reduced amount of power whenever it is required. In order to realize the direct control of wind turbine output power across a wide range of wind speeds, a linearized parameter varying dynamic model of the nonlinear wind turbine system including wind disturbances is developed and used in this paper. The stability of the wind turbine system is analyzed and a blade pitch controller is designed, based on the linearized, parameter-varying, model-predictive control and is validated. Thus, the wind turbine is regulated in a way that the generator delivers the demanded power output to the load. Moreover, the blade pitch control system also performs the key function of augmenting the stability of the wind turbine, for the right choice of the gains.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献