Abstract
AbstractTrajectory prediction is an important support for analysing the vessel motion behaviour, judging the vessel traffic risk and collision avoidance route planning of intelligent ships. To improve the accuracy of trajectory prediction in complex situations, a Generative Adversarial Network with Attention Module and Interaction Module (GAN-AI) is proposed to predict the trajectories of multiple vessels. Firstly, GAN-AI can infer all vessels’ future trajectories simultaneously when in the same local area. Secondly, GAN-AI is based on adversarial architecture and trained by competition for better convergence. Thirdly, an interactive module is designed to extract the group motion features of the multiple vessels, to achieve better performance at the ship encounter situations. GAN-AI has been tested on the historical trajectory data of Zhoushan port in China; the experimental results show that the GAN-AI model improves the prediction accuracy by 20%, 24% and 72% compared with sequence to sequence (seq2seq), plain GAN, and the Kalman model. It is of great significance to improve the safety management level of the vessel traffic service system and judge the degree of ship traffic risk.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Reference22 articles.
1. Bahdanau, D. , Cho, K. and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
2. Wavelet Analysis Based Hidden Markov Model for Large Ship Trajectory Prediction
3. Perera, L. P. and Soares, C. G. (2010). Ocean Vessel Trajectory Estimation and Prediction Based on Extended Kalman Filter. The Second International Conference on Adaptive and Self-Adaptive Systems and Applications.
4. A Ship Trajectory Prediction Framework Based on a Recurrent Neural Network
5. L-VTP: Long-Term Vessel Trajectory Prediction Based on Multi-Source Data Analysis
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献