Vessel Trajectory Prediction at Inner Harbor based on Deep Learning using AIS Data

Author:

Shin Gilho1,Yang Hyun2

Affiliation:

1. Busan Vessel Traffic Services Center

2. Korea Maritime and Ocean University

Abstract

Abstract

This study proposes a novel approach for predicting vessel trajectories in the inner harbor of Busan Port using Automatic Identification System (AIS) data and deep learning techniques. Linear interpolation was applied to address unequal time intervals and limited data. Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), and Bidirectional Gated Recurrent Unit (Bi-GRU) models were trained and evaluated, with LSTM achieving the best performance. The study also identified the critical prediction area for Vessel Traffic Service Operator (VTSO). The proposed method can contribute to enhancing safety and efficiency of vessel traffic management in complex port environments.

Publisher

Springer Science and Business Media LLC

Reference40 articles.

1. Learning long-term dependencies with gradient descent is difficult;Bengio Y;IEEE transactions on neural networks.,1994

2. Learning phrase representations using RNN encoder-decoder for statistical machine translation;Cho K,2014

3. Empirical evaluation of gated recurrent neural networks on sequence modeling;Chung J;arXiv preprint arXiv,2014

4. Finding structure in time;Elman JL;Cognitive science,1990

5. A Simplified Simulation Model of Ship Navigation for Safety and Collision Avoidance in Heavy Traffic Areas;Fang M-C;Journal of Navigation,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3