Terrain Matching Positioning Method Based on Node Multi-information Fusion

Author:

Li Ye,Wang Rupeng,Chen Pengyun,Shen Peng,Jiang Yanqing

Abstract

Measurement bias and lack of terrain features often cause false peaks during underwater terrain matching positioning, that is, there is more than one peak near the real position. Previous methods to address this problem have increased the number of measurement beams, but this also increases the data processing time and energy consumption. At the same time, the ratio of measured information that is used does not increase. In other words, we should increase the ratio of measured information that is used, not simply increase the amount of information that is measured. Conventional matching algorithms only use the height of nodes without considering surface information, which is composed of height and the position of multiple nodes in three-dimensional space. Multi-beam sonar can obtain the three-dimensional distribution of terrain nodes. This node information is not just a height sequence, as it is used in previous methods. If we consider the nodes as a three-dimensional distribution of points with height and position information, this increases the matching position information and more of the terrain features can be extracted from the same measured data. Hence, in this paper, a terrain positioning method called the Node Multi-information Fusion (NMIF) is presented. This method focuses on improving the stability and accuracy degraded by bias in the Digital Elevation Map (DEM), terrain repeatability, and other factors. First, the concept of a Single Node Data Packet (SNDP) is introduced. The SNDP includes elevation and surface information surrounding the node, such as roughness, gradient, and slope. This additional topographic feature information improves the robustness and accuracy of the system. A computer simulation using actual ocean bottom topography verifies the advantages of the proposed NMIF algorithm.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference20 articles.

1. Liu C. (2003). Underwater Vehicle Terrain Reference Positioning Technology Research. Doctoral Thesis in Navigation, Guidance and Control, Harbin Engineering University, Harbin, China.

2. Nakatani T. , Ura T. , Sakamaki T. and Kojima J. (2009). Terrain based localization for pinpoint observation of deep seafloors. Oceans, Bremen, Germany.

3. Closed-loop terrain relative navigation for AUVs with non-inertial grade navigation sensors

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3