A Method of Over Bounding Ground Based Augmentation System (GBAS) Heavy Tail Error Distributions

Author:

Braff Ronald,Shively Curtis

Abstract

The purpose of this paper is to describe a statistical method for modelling and accounting for the heavy tail fault-free error distributions that have been encountered in the Local Area Augmentation System (LAAS), the FAA's version of a ground-based augmentation system (GBAS) for GPS. The method uses the Normal Inverse Gaussian (NIG) family of distributions to describe a heaviest tail distribution, and to select a suitable NIG family member as a model distribution based upon a statistical observability criterion applied to the FAA's LAAS prototype error data. Since the independent sample size of the data is limited to several thousand and the tail probability of interest is of the order of 10−9, there is a chance of mismodelling. A position domain monitor (PDM) is shown to provide significant mitigation of mismodelling, even for the heaviest tail that could be encountered, if it can meet certain stringent accuracy and threshold requirements. Aside from its application to GBAS, this paper should be of general interest because it describes a different approach to navigation error modelling and introduces the application of the NIG distribution to navigation error analysis.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3