On Probabilistic Risk of Aircraft Collision along Air Corridors

Author:

Campos Luís M. B. C.,Marques Joaquim M. G.ORCID

Abstract

The separation of aircraft in cruising flight in air corridors is based on the assurance of an extremely low probability of collision due to position inaccuracy caused by navigation errors, atmospheric disturbances, or other factors. The appropriate standard is the International Civil Aviation Organization (ICAO) Target Level of Safety (TLS) of frequency of collision less than 5 × 10−9 per flight hour. An upper bound for the collision probability per unit distance is the probability of coincidence, in the case of aircraft flying at the same speed along parallel tracks in the same direction. This leads to the case of two aircraft flying at a constant separation, for which at least three probabilities of coincidence can be calculated: (i) the maximum probability of coincidence at the most likely point; (ii) the cumulative probability of coincidence integrated along the flight path; and (iii) the cumulative probability of coincidence integrated over all space. These three probabilities of coincidence are applied to the old standard and new reduced vertical separations of 2000 ft and 1000 ft respectively, for comparison with the ICAO TLS, and also to assess their suitability as safety metrics. The possibility is raised of complementing the ICAO TLS 5 × 10−9 per hour, which is suitable for the cumulative probability of collision, by two additional safety metrics: (i) one per hour flown squared, which is suitable for comparison with the maximum joint probability density of collision; and (ii) another times hour flown, for comparison with the three-dimensional cumulative probability of coincidence. These three metrics (i) to (iii) have distinct dimensions, give different information, and could be alternatives or supplements.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference64 articles.

1. EUROCONTROL Seven-Year Forecast February 2018https://www.eurocontrol.int/sites/default/files/content/documents/official-documents/forecasts/seven-year-flights-service-units-forecast-2018-2024-Feb2018.pdf

2. A safety assessment methodology applied to CNS/ATM-based air traffic control system

3. Free-Flight and en Route Air Safety: A First-Order Analysis

4. A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS);Hinton,1997

5. AIRPLANE TRAILING VORTICES

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3