An Adaptive Vector Tracking Scheme for High-Orbit Degraded GNSS Signal

Author:

Jiao Chenyang,Wang Xinlong,Wang Dun,Li Qunsheng,Zhang Jinpeng,Cai Yuanwen

Abstract

Global navigation satellite system (GNSS) receivers meet numerous challenges in a high-orbit environment, including weak and discontinuous signal, and time-varying strength. To resolve these issues and enhance reliability, an innovative adaptive vector tracking loop (VTL) scheme is proposed. Non-linear models of the VTL filter are established to calculate code phase and carrier frequency errors accurately. Based on this, a deep analysis has been developed on the measurement noise. To reduce the impact of the interdependent noises among channels in VTL, an adaptive VTL algorithm assisted by the variational Bayesian (VB) learning network is proposed to estimate the measurement noise and maintain the error convergence in the time-varying noise or signal outage conditions. Further, the implementation steps of the adaptive algorithm have been designed in detail. In particular, the carrier-to-noise power ratio (C/N0) estimation method is further employed to update the a prior probability density in case of change of tracking satellite. The simulation results indicate that the proposed VTL scheme with VB algorithm is a promising method to improve the accuracy and reliability of GNSS receivers significantly under a high-orbit degraded signal environment.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference30 articles.

1. William, B. , Bo, N. and Michael, C. M. (2006). Navigation Performance in High Earth Orbits Using Navigator GPS Receiver. 29th Annual AAS Guidance and Control Conference, Breckenridge, CO, United States, February 4–8.

2. Frangos, K. , Kealy, A. , Gikas, V. and Hasnur, A. (2010). Dynamic Modeling for Land Mobile Navigation Using Low-Cost Inertial Sensors and Least Squares Support Vector Machine Learning. Proc. ION GNSS 2010, Institute of Navigation, Portland, Oregon, USA, September 21–24, pp. 1687–1696.

3. Performance Enhancement for a GPS Vector-Tracking Loop Utilizing an Adaptive Iterated Extended Kalman Filter

4. GPS/INS/Odometer Integrated System Using Fuzzy Neural Network for Land Vehicle Navigation Applications

5. Double differencing within GNSS constellations

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3