GPS/INS/Odometer Integrated System Using Fuzzy Neural Network for Land Vehicle Navigation Applications

Author:

Li Zengke,Wang Jian,Li Binghao,Gao Jingxiang,Tan Xinglong

Abstract

The integration of Global Positioning Systems (GPS) with Inertial Navigation Systems (INS) has been very actively studied and widely applied for many years. Some sensors and artificial intelligence methods have been applied to handle GPS outages in GPS/INS integrated navigation. However, the integrated system using the above method still results in seriously degraded navigation solutions over long GPS outages. To deal with the problem, this paper presents a GPS/INS/odometer integrated system using a fuzzy neural network (FNN) for land vehicle navigation applications. Provided that the measurement type of GPS and odometer is the same, the topology of a FNN used in a GPS/INS/odometer integrated system is constructed. The information from GPS, odometer and IMU is input into a FNN system for network training during signal availability, while the FNN model receives the observations from IMU and odometer to generate odometer velocity correction to enhance resolution accuracy over long GPS outages. An actual experiment was performed to validate the new algorithm. The results indicate that the proposed method can improve the position, velocity and attitude accuracy of the integrated system, especially the position parameters, over long GPS outages.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference24 articles.

1. Enhancing positioning accuracy of GPS/INS system during GPS outages utilizing artificial neural network

2. Lever arm compensation for GPS/INS/odometer integrated system;Seo;International Journal of Control, Automation, and Systems,2006

3. An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network

4. Implementation of a gps/ins/odometer navigation system;Hemerly;ABCM Symposium in Mechatronics,2008

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3