Online Heuristically Planning for Relative Optimal Paths Using a Stochastic Algorithm for USVs

Author:

Wen Naifeng,Zhang Rubo,Liu Guanqun,Wu Junwei

Abstract

This paper attempts to solve a challenge in online relative optimal path planning of unmanned surface vehicles (USVs) caused by current and wave disturbance in the practical marine environment. The asymptotically optimal rapidly extending random tree (RRT*) method for local path optimisation is improved. Based on that, an online path planning (OPP) scheme is proposed according to the USV's kinematic and dynamic model. The execution efficiency of RRT* is improved by reduction of the sampling space that is used for randomly learning environmental knowledge. A heuristic sampling scheme is proposed based on the proportional navigation guidance (PNG) method that is used to enable the OPP procedure to utilise the reference information of the global path. Meanwhile, PNG is used to guide RRT* in generating feasible paths with a small amount of gentle turns. The dynamic obstacle avoidance problem is also investigated based on the International Regulations for Preventing Collisions at Sea. Case studies demonstrate that the proposed method efficiently plans paths that are relatively easier to execute and lower in fuel expenditure than traditional schemes. The dynamic obstacle avoidance ability of the proposed scheme is also attested.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3