Author:
Odijk Dennis,Arora Balwinder S.,Teunissen Peter J.G.
Abstract
This contribution covers precise (cm-level) relative Global Navigation Satellite System (GNSS) positioning for which the baseline length can reach up to a few hundred km. Carrier-phase ambiguity resolution is required to obtain this high positioning accuracy within manageable observation time spans. However, for such long baselines, the differential ionospheric delays hamper fast ambiguity resolution as based on current dual-frequency Global Positioning System (GPS). It is expected that the modernization of GPS towards a triple-frequency system, as well as the development of Galileo towards a full constellation will be beneficial in speeding up long-baseline ambiguity resolution. In this article we will predict ambiguity resolution success rates for GPS+Galileo for a 250 km baseline based on the ambiguity variance matrix, where the Galileo constellation is simulated by means of Yuma almanac data. From our studies it can be concluded that ambiguity resolution will likely become faster (less than ten minutes) in the case of GPS+Galileo when based on triple-frequency data of both systems, however much shorter times to fix the ambiguities (one-two minutes) can be expected when only a subset of ambiguities is fixed instead of the complete vector (partial ambiguity resolution).
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Reference26 articles.
1. Zhang W. , Cannon M.E. , Julien O. and Alves P. (2003). Investigation of combined GPS/Galileo cascading ambiguity resolution schemes. Proceedings of ION GNSS-2003, Portland, OR, 9–12 September, 2599–2610.
2. On the approximation of the integer least-sqaures success rate: which lower or upper bound to use?
3. Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution
4. Teunissen P.J.G. , Joosten P. and Tiberius C.C.J.M. (1999). Geometry-free ambiguity success rates in case of partial fixing. Proceedings of ION NTM-1999, San Diego, CA, 25–27 January, 201–207.
5. On the GPS widelane and its decorrelating property
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献