GPS + Galileo + BDS-3 medium to long-range single-baseline RTK: an alternative for network-based RTK?

Author:

Ogutcu Sermet,Alcay Salih,Ozdemir Behlul Numan,Duman HuseyinORCID,Koray Ulkunur,Konukseven CerenORCID,Bilal Nesibe Gül

Abstract

Abstract Thanks to the development of the real-time kinematic (RTK) algorithm and the emerging Global Navigation Satellite System (GNSS), especially for Galileo and BeiDou-3, reliable positioning accuracy for medium and long-baseline RTK became possible globally. Moreover, with the development of the GNSS receiver hardware, baseline length limitations due to radio-based communications are removed thanks to internet-based communication. In this work, single-baseline RTK, incorporated partial ambiguity resolution with troposphere and ionosphere weighting, using GPS (G), Galileo (E), BeiDou-3 (C3) and multi-GNSS (GE and GEC3), is conducted with real GNSS data of EUREF Permanent GNSS network under three different cutoff angles (10°, 20°, and 30°) for six different lengths of baselines (~50, ~150, ~250, ~350, ~450, and ~550 km). The results show that the multi-GNSS RTK solution significantly contributed to the positioning accuracy and convergence time of the single-system RTK solutions. Based on the results, non-available epoch-wise solutions for the high-degree cutoff angles are more obvious for the single-system RTK, whereas multi-GNSS solutions provide 100% solutions for each cutoff angle and baseline. The results indicate that instantaneous and a few epochs single-epoch ambiguity resolution is feasible for 50, 150, 250 and 350 km baseline lengths for multi-GNSS RTK. Based on the positioning results, horizontal–vertical positioning improvements of multi-GNSS RTK (GEC3) compared with the single-system GPS RTK are found as 50%–37%, 40%–35%, 55%–47%, 53%–54%, 57%–49% and 57%–49% for 50, 150, 250, 350, 450 and 550 km, respectively, under a 10° cutoff angle. For 20° and 30° cutoff angles, the accuracy improvements are much higher. The convergence time improvements (n/e/u) of multi-GNSS RTK (GEC3) compared with the single-system GPS RTK are found as 86/92/75%, 77/67/72%, 75/77/83%, 53/56/52%, 69/49/62%, and 52/45/39% for 50, 150, 250, 350, 450 and 550 km, respectively, under a 10° cutoff angle.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3