An Augmented Strapdown Inertial Navigation System using Jerk and Jounce of Motion for a Flying Robot

Author:

Bayat Milad,Atashgah MA Amiri

Abstract

This paper offers an algorithm for enhancement of positioning accuracy of a quad-rotor flying robot, based on jerk and jounce of motion. The suggested method utilises the first and second numerical derivatives of the vehicle's acceleration and augments the mathematical model in the estimation process. For this purpose, the Kalman Filter (KF) is implemented for integration of a Strapdown Inertial Navigation System (SINS) and Global Navigation Satellite System (GNSS). The required data are collected from a low-cost/quality Micro Electromechanical Sensors (MEMS) during an assisted flight. For increasing the precision and accuracy of the collected data, all instruments including accelerometers, gyroscopes and magnetometers are calibrated before the experiments. Moreover, to reduce and limit the measurement noises of the MEMS sensor, a low-pass filter is applied; this is while sensors in the autopilot are affected by high levels of noise and drift, which makes them inappropriate for accurate positioning. The experimental results exhibit an improvement in positioning and altitude sensing through augmentation of the loosely coupled SINS/GNSS navigation method.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference20 articles.

1. In-flight alignment of a strapdown inertial navigation system of an unmanned aerial vehicle

2. Jerk, snap and the cosmological equation of state

3. Finding the maximum magnitude response (gain) of second-order filters without calculus;Cartwright;Lat. Am. J. Phys. Educ. Vol,2012

4. Estimating vehicle state by GPS/IMU fusion with vehicle dynamics;Kamal;Journal of Intelligent and Robotic Systems,2014

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3