Abstract
AbstractTo achieve autonomous all-day flight by high-altitude long-endurance unmanned aerial vehicle (HALE UAV), a new navigation method with deep integration of strapdown inertial measurement unit (SIMU) and triple star sensors based on atmospheric refraction correction is proposed. By analysing the atmospheric refraction model, the stellar azimuth coordinate system is introduced and the coupling relationship between attitude and position is established. Based on the geometric relationship whereby all the stellar azimuth planes intersect on the common zenith direction, the sole celestial navigation system (CNS) method by stellar refraction with triple narrow fields of view (FOVs) is studied and a loss function is built to evaluate the navigation accuracy. Finally, the new SIMU/triple star sensors deep integrated navigation method with refraction correction upgraded from the traditional inertial navigation system (INS)/CNS integrated method can be established. The results of simulations show that the proposed method can effectively restrain navigation error of a HALE UAV in 24 h steady-state cruising in the stratosphere.
Funder
Defense Industrial Technology Development Program
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献