Fusion of Ship Perceptual Information for Electronic Navigational Chart and Radar Images based on Deep Learning

Author:

Guo Muzhuang,Guo Chen,Zhang Chuang,Zhang Daheng,Gao Zongjiang

Abstract

Superimposing Electronic Navigational Chart (ENC) data on marine radar images can enrich information for navigation. However, direct image superposition is affected by the performance of various instruments such as Global Navigation Satellite Systems (GNSS) and compasses and may undermine the effectiveness of the resulting information. We propose a data fusion algorithm based on deep learning to extract robust features from radar images. By deep learning in this context we mean employing a class of machine learning algorithms, including artificial neural networks, that use multiple layers to progressively extract higher level features from raw input. We first exploit the ability of deep learning to perform target detection for the identification of marine radar targets. Then, image processing is performed on the identified targets to determine reference points for consistent data fusion of ENC and marine radar information. Finally, a more intelligent fusion algorithm is built to merge the marine radar and electronic chart data according to the determined reference points. The proposed fusion is verified through simulations using ENC data and marine radar images from real ships in narrow waters over a continuous period. The results suggest a suitable performance for edge matching of the shoreline and real-time applicability. The fused image can provide comprehensive information to support navigation, thus enhancing important aspects such as safety.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3